
4710 BOOKSTORE

COP 4710 FINAL PROJECT

Project Members:

• Anthony Leonel Carvalho (Leader)
• Alejandro Valverde
• Diego Munoz

OVERVIEW

This report outlines the design and core functionalities of our web-based book search website,

4710 Bookstore. The website allows users to search for books by various criteria including title,

genre, and rating. It displays concise information about each book, such as its image and title,

and allows users to add books to their watchlist for future reference.

TECHNOLOGY STACK

• Backend Framework: Flask
• Database: SQLAlchemy with MySQL
• Frontend: HTML, CSS, and Flask Templates
• Authentication: User registration and login

KEY FEATURES AND FUNCTIONALITIES

1. Database Management: The backend is built using Flask, a lightweight Python web

framework, which facilitates communication between the frontend interface and the

backend logic. SQLAlchemy is employed for database interactions, allowing for efficient

and seamless management of book-related data. The system includes functionalities to:
o Upload and Display Books: Books can be added to the database via JSON file uploads. This

feature ensures that bulk book data can be integrated into the system quickly.
o Search Books: Users can search the database for books using various criteria. This search

functionality helps users find specific books or explore available titles.
o Watchlist Functionality: Users have the ability to add books to their personal watchlist.

This feature allows users to track books of interest and easily access them later.
2. User and Admin Features:

o User Interaction: Registered users can view book details, search for books, and manage
their watchlist. This enhances the browsing experience and personalizes user engagement.

o Admin Panel: Admins have access to an administrative interface where they can perform
several critical tasks:

▪ View All Users and Books: Admins can view lists of all users and books in the
system. This includes details such as the books users have added to their
watchlists.

▪ Manage Users and Books: Admins can delete users and books as needed. They
can also upload new books to the database using JSON files.

▪ Monitor User Activity: Admins can track user interactions, including which books
are being watched by users, providing insights into user preferences and system
usage.

APPLICATION STRUCTURE AND WORKFLOW

• Frontend Integration: The user interface is designed to be intuitive and responsive, providing a
seamless experience across different devices. It includes pages for book search, user watchlists,
and administrative functions.

• Backend Operations: Flask routes handle various requests such as displaying the admin panel,
adding books, deleting books, and managing user data. Each route is associated with specific
functionalities and ensures that operations are executed securely and efficiently.

• Database Interactions: SQLAlchemy is used to manage database transactions, ensuring data
consistency and integrity. Operations such as querying for books, adding new records, and deleting
entries are handled through SQLAlchemy models and sessions.

TECHNICAL SPECIFICATIONS

• Framework and Tools:
o Flask: For developing the backend and handling web requests.
o SQLAlchemy: For ORM-based database interactions.
o JSON: For bulk uploading book data.

• User Interface: Designed for ease of use, with features like search bars, watchlist management, and
administrative controls.

• Security Measures: Authentication and authorization are implemented to protect user data and
ensure that only authorized users (admins) can access certain functionalities.

CONCLUSION

The Online Bookstore System provides a robust platform for book management, with features

tailored to both end-users and administrators. It leverages Flask and SQLAlchemy to offer a

dynamic and scalable solution for book-related operations, enhancing both user experience and

administrative oversight.

NEXT PAGE DOCUMENTATION.

DOCUMENTATION:

DATABASE MODELS

Description: The database models define the structure of the database tables used to store

information about users, books, watchlists, orders, and order items.

SETTING UP DATABASE

SETTING UP DATABASE

To setup-database, create a database named 4710 using the sql schema given on

the zipped package (create_db.sql), and update the database root and password

to your config on line 15 of the code.

Running the App: To run, simply run run.bat

The run.bat, will install all needed libraries and run the app.

SET-UP INFO / RUN

FORMS:

SETTING UP FLASK FORMS ON APP.PY

Description: The forms handle user input for login and registration. They ensure that data

entered by users meets certain criteria before processing it.

ROUTES

HOMEPAGE:

HOME / SEARCH BOOKS

Description: This route renders the home page, allowing users to search for books. It displays

books based on the search query and indicates whether they are in the user’s watchlist.

LOGIN:

LOGIN / REGUSTER PAGE

LOGIN

LOGIN / REGISTER

Description: This route handles user login. It validates user credentials and manages the login

session.

WATCHLIST:

WATCHLIST PAGE

Description: This route shows the books that are in the user’s watchlist.

WATCHLIST:

API (QUERY) - TO UPDATE WATCHLSIT

UPDATE WATCHLIST:

Description: This route handles adding and removing books from the user's watchlist based on

the provided action (add or remove).

REGISTER:

REGISTERING API (SQLALQUEMY)

Description: This route manages user registration, including input validation and adding

new users to the database.

ADMIN ROUTES

ADMIN ROUTE:

ADMIN PANEL PAGE

Description: This route allows administrators to access the admin panel. It checks if the logged-

in user has admin privileges. If so, it fetches and displays a list of all users and books. Otherwise,

it redirects to the home page or login page based on the user's authentication status.

ADDING BOOKS:

ADDING BOOKS API (SQLALQUEMY)

Description: This route allows the admin to upload a JSON file containing book data. The file is

parsed, and each book entry is added to the database. If successful, the admin panel is updated to

reflect the new additions. It handles errors related to JSON parsing and other issues.

DELETE BOOKS:

DELETE BOOK ROUTE API (SQLALQUEMY)

Description: This route allows the admin to delete a book from the database based on its ID.

After deletion, it redirects back to the admin panel with a success message.

DELETE USER:

DELETE USER ROUTE API (SQLALQUEMY)

Description: This route allows the admin to delete a user from the database based on their ID.

After deletion, it redirects back to the admin panel with a success message

THANKS FOR REVIWEING OUR PROJECT.

Please feel free to reach out and leave your comments.

